Combining Philosophers

All the ideas for George Boolos, Harold Noonan and Richard Wollheim

expand these ideas     |    start again     |     specify just one area for these philosophers


56 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
The logic of ZF is classical first-order predicate logic with identity [Boolos]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
A few axioms of set theory 'force themselves on us', but most of them don't [Boolos]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Do the Replacement Axioms exceed the iterative conception of sets? [Boolos, by Maddy]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
The use of plurals doesn't commit us to sets; there do not exist individuals and collections [Boolos]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve sets are inconsistent: there is no set for things that do not belong to themselves [Boolos]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception says sets are formed at stages; some are 'earlier', and must be formed first [Boolos]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is weak (Fs only collect is something the same size does) or strong (fewer Fs than objects) [Boolos, by Potter]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Does a bowl of Cheerios contain all its sets and subsets? [Boolos]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Boolos reinterprets second-order logic as plural logic [Boolos, by Oliver/Smiley]
Second-order logic metatheory is set-theoretic, and second-order validity has set-theoretic problems [Boolos]
Monadic second-order logic might be understood in terms of plural quantifiers [Boolos, by Shapiro]
Boolos showed how plural quantifiers can interpret monadic second-order logic [Boolos, by Linnebo]
Any sentence of monadic second-order logic can be translated into plural first-order logic [Boolos, by Linnebo]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
A sentence can't be a truth of logic if it asserts the existence of certain sets [Boolos]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is clearly a logical concept, and greatly enhances predicate calculus [Boolos]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
'∀x x=x' only means 'everything is identical to itself' if the range of 'everything' is fixed [Boolos]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order quantifiers are just like plural quantifiers in ordinary language, with no extra ontology [Boolos, by Shapiro]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
We should understand second-order existential quantifiers as plural quantifiers [Boolos, by Shapiro]
Plural forms have no more ontological commitment than to first-order objects [Boolos]
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Boolos invented plural quantification [Boolos, by Benardete,JA]
5. Theory of Logic / K. Features of Logics / 4. Completeness
Weak completeness: if it is valid, it is provable. Strong: it is provable from a set of sentences [Boolos]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Why should compactness be definitive of logic? [Boolos, by Hacking]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
It is controversial whether only 'numerical identity' allows two things to be counted as one [Noonan]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Infinite natural numbers is as obvious as infinite sentences in English [Boolos]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
Mathematics and science do not require very high orders of infinity [Boolos]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Many concepts can only be expressed by second-order logic [Boolos]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Mathematics isn't surprising, given that we experience many objects as abstract [Boolos]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / b. Commitment of quantifiers
First- and second-order quantifiers are two ways of referring to the same things [Boolos]
8. Modes of Existence / D. Universals / 1. Universals
It is lunacy to think we only see ink-marks, and not word-types [Boolos]
8. Modes of Existence / E. Nominalism / 5. Class Nominalism
Classes rarely share properties with their members - unlike universals and types [Wollheim]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
I am a fan of abstract objects, and confident of their existence [Boolos]
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
We deal with abstract objects all the time: software, poems, mistakes, triangles.. [Boolos]
9. Objects / E. Objects over Time / 4. Four-Dimensionalism
I could have died at five, but the summation of my adult stages could not [Noonan]
9. Objects / E. Objects over Time / 5. Temporal Parts
Stage theorists accept four-dimensionalism, but call each stage a whole object [Noonan]
9. Objects / F. Identity among Objects / 2. Defining Identity
Identity definitions (such as self-identity, or the smallest equivalence relation) are usually circular [Noonan]
Identity is usually defined as the equivalence relation satisfying Leibniz's Law [Noonan]
Problems about identity can't even be formulated without the concept of identity [Noonan]
Identity can only be characterised in a second-order language [Noonan]
9. Objects / F. Identity among Objects / 8. Leibniz's Law
Leibniz's Law must be kept separate from the substitutivity principle [Noonan]
Indiscernibility is basic to our understanding of identity and distinctness [Noonan]
15. Nature of Minds / C. Capacities of Minds / 4. Objectification
We often treat a type as if it were a sort of token [Wollheim]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
An 'abstraction principle' says two things are identical if they are 'equivalent' in some respect [Boolos]
21. Aesthetics / A. Aesthetic Experience / 2. Aesthetic Attitude
A love of nature must precede a love of art [Wollheim]
Interpretation is performance for some arts, and critical for all arts [Wollheim]
21. Aesthetics / B. Nature of Art / 1. Defining Art
A criterion of identity for works of art would be easier than a definition [Wollheim]
21. Aesthetics / B. Nature of Art / 2. Art as Form
If beauty needs organisation, then totally simple things can't be beautiful [Wollheim]
21. Aesthetics / B. Nature of Art / 4. Art as Expression
It is claimed that the expressive properties of artworks are non-physical [Wollheim]
Some say art must have verbalisable expression, and others say the opposite! [Wollheim]
21. Aesthetics / B. Nature of Art / 6. Art as Institution
Style can't be seen directly within a work, but appreciation needs a grasp of style [Wollheim]
The traditional view is that knowledge of its genre to essential to appreciating literature [Wollheim]
21. Aesthetics / B. Nature of Art / 7. Ontology of Art
If artworks are not physical objects, they are either ideal entities, or collections of phenomena [Wollheim]
The ideal theory says art is an intuition, shaped by a particular process, and presented in public [Wollheim]
The ideal theory of art neglects both the audience and the medium employed [Wollheim]
A musical performance has virtually the same features as the piece of music [Wollheim]
21. Aesthetics / B. Nature of Art / 8. The Arts / a. Music
An interpretation adds further properties to the generic piece of music [Wollheim]
21. Aesthetics / C. Artistic Issues / 3. Artistic Representation
A drawing only represents Napoleon if the artist intended it to [Wollheim]